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1 – Introduction

• If it exists, the Standard Model (SM) Higgs boson will be discovered

at the LHC

• The LHC promises complete coverage of Higgs decay scenarios

• Quantitatively at the LHC: measure

☞ MH to 0.1%

☞ ΓH to≤ 10%

☞ σ× Br to 10%
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• what remains to be done:determine Higgs potential

V (ηH) =
1

2
m2

H η2
H + λ v η3

H +
1

4
λ̃ η4

H ,

ηH : physical Higgs field,v = (
√

2GF )−1/2,
SM: λ̃ = λ = λSM = m2

H/(2v2)

☞ λ andλ̃ areper se free parameters

• to measureλ (λ̃), experiments must observeHH (HHH) production

☞ HHH cross sections too small to probeλ̃ at any machine consid-
ered so far

☞ concentrate onλ in the following

• radiative corrections toHHH coupling:

☞ SM:−4%−−11% for 120 GeV < MH < 200 GeV (Yuanet al.)

☞ can be up to100%in general 2HDM

☞ MSSM: up to 8% for light stop squarks (Hollik et al.)
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• The measurement of the Higgs self-coupling,λ, is one of the bench-

marks which is used to gauge the performance of the ILC

• Past investigations have focused on a very light Higgs boson(mH =

120 GeV) with
√

s = 500 GeV

• and the background was estimated using shower Monte Carlos

• Here, I present calculations usingMadEvent

☞ for mH = 120 GeV,mH = 140 GeV andmH = 180 GeV (disfa-

vored in recentGFITTER fits)

☞
√

s = 500 GeV, 1 TeV and 3 TeV

☞ for e+e− → ZHH → jj4b ande+e− → νν̄HH

☞ with the backgrounds, including the non-resonant diagrams, cal-

culated using exact matrix elements (whereever possible)
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2 –ZHH Production

• I focus onZHH → jj4b and require that thejj system is compatible
with a Z boson, and the4b’s form two pairs which are compatible in
invariant mass with a Higgs boson:

|MZ − m(jj)| < 8 GeV

100 (120) GeV < m(bb̄) < 126 (150) GeV

for mH = 120 (140) GeV.

• require 4 taggedb-quarks

• include minimal detector effects by Gaussian smearing (ILCdetector
expectations):

∆E

E
(had) =

0.405√
E

,
∆E

E
(lep) =

0.102√
E

,
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• cuts:
Ej(b) > 15 GeV, 5◦

< θ(j(b), beam) < 175◦

θ(j(b), j′(b′)) > 10◦

θ(j, b) > 10◦

• assume ab-tagging efficiency ofǫb = 0.9, and charm and light

quark/gluon jet misidentification probabilities of

Pc→b = 10%, Pj→b = 0.5%

• also investigateǫb = 0.8 andPc→b = 2%, Pj→b = 0.1%

• take energy loss ofb-quarks into account via a parametrized function

• mHH distribution is sensitive toλ
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• main backgrounds:

☞ non-resonant diagrams (≈ 8500 O(α6), O(α4
sα

2) andO(α2
sα

4)

diagrams)

☞ jjbb̄cc̄ (bb̄4j) production with two mis-identified charm (light

quark/gluon) jets (7300 [15600] diagrams)

☞ assumeb-jet charge can be measured with 100% efficiency (expec-

tation for ILC:≈ 90%)

• results: solid black: SM signal,

magenta: SM resonant and non-resonant diagrams

dash (dots):∆λHHH = (λ/λSM − 1) = +1 (−1)

dashed blue: jjbb̄cc̄ background
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√
s = 500 GeV

• The jjbb̄cc̄ and non-resonant backgrounds formH = 140 GeV are
muchlarger than formH = 120 GeV

• The cross section formH = 140 GeV istiny (Br(H → bb̄) ≈ 30%)

• black dashed histogram: combinatorial background from pairing the
wrongb andb̄
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√
s = 1 TeV

• The background formH = 140 GeV is significantly smaller for
√

s =

1 TeV

• Thebb̄4j background is negligible at both
√

s = 500 GeV and 1 TeV
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• Thee+e− → ZHH → jj4b rate is very small

• The signal rate can be increased by requiring≥ 3 taggedb-quarks
instead of 4b-tags
gain: factor≈ 1.4

√
s = 500 GeV

• require ajj pair consistent withZ, a bb̄ pair, and abj pair consistent
with a Higgs
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• lines:

solid (dashed) blue: bb̄cjjj (bb̄cc̄jj)

red: bb̄4j

all others have the same meaning as before

• Unfortunately, at
√

s = 500 GeV, the gain is more than compensated

by theincreasein thebb̄4j andjjbb̄cc̄ background.

• In addition,bb̄cjjj production contributes to the background

• Note: the background cross section is∝ α4
s and thus carries a sub-

stantial renormalization scale uncertainty

➞ either need NLO QCD corrections calculated for backgrounds(good

luck with that!) or have to measure backgrounds
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√
s = 1 TeV

• background much more favorable at
√

s = 1 TeV; however, it is still

non-negligible
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3 –νν̄HH Production

• Considerνν̄HH → νν̄4b for mH = 120 GeV andmH = 140 GeV

first

• Require that the fourb’s form two pairs which are compatible with a
Higgs boson

100 (120) GeV < m(bb̄) < 126 (150) GeV

for mH = 120 (140) GeV.

• require≥ 3 taggedb-quarks

• includeZHH → νlν̄l4b with l = µ, τ
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• use same basic cuts and resolutions as before

• In addition, we require
p/T > 15 GeV

• main backgrounds:

☞ non-resonant diagrams (≈ 2300 O(α6), andO(α2
sα

4) diagrams)

☞ νν̄bb̄cc̄ (νν̄bb̄jj) production with two mis-identified charm (light

quark/gluon) jets (900 [2100] diagrams)

• other backgrounds:4b and bb̄jj production with the missing trans-

verse momentum originating from jet mismeasurements and the en-

ergy loss ofb-quarks

requirep/T > 15 GeV

• Furthermore:e+e− → e+e−bb̄bb̄ where both electrons are missed

(not calculated yet)
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• results: solid black: SM signal,

magenta: SM resonant and non-resonant diagrams

dash (dots):∆λHHH = (λ/λSM − 1) = +1 (−1)

blue: νν̄bb̄cc̄ background

red: νν̄bb̄jj background

solid (dashed) histogram:4b (bb̄jj) background
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√
s = 1 TeV

• Theνν̄bb̄cc̄ andνν̄bb̄jj backgrounds are small

• The4b andbb̄jj backgrounds pose no threat to the measurement ofλ

• non-resonant contributions can easily be mistaken for a positive anoma-

lous Higgs self-coupling
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√
s = 3 TeV
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• For mH = 140 GeV: B(H → WW ∗ → 4f) ≈ 50%, B(WW ∗ →
4j) ≈ 46%

➞ one can significantly increase the signal cross section by taking into

account theνν̄bb̄4j final state

• Also take into accountH → ZZ∗ → 4j (B(H → ZZ∗) ≈ 10% for

mH = 140 GeV)

• require
|mH − m(4j)| < 20 GeV

and one un-tagged jet pair with

|mW − m(jj)| < 8 GeV

• main backgrounds: non-resonantνν̄bb̄4j, νν̄4c andνν̄bb̄cc̄jj produc-

tion
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• problem: these are2 → 8 processes with> 105 Feynman diagrams

☞ too many diagrams forMadEvent (takes more than 200h CPU

time (3ghz Xeon) togeneratediagrams

☞ WHIZARD could not compile code (compilation terminated after

> 48h)

☞ HELAC-PHEGAS bombed with a glibc error

☞ SHERPA can’t handle it in its current version (V1.1), but, accord-

ing to Frank Krauss will be able to so in V1.2

☞ CARLOMAT should be able to handle it, but is not publically avail-

able (author never replied to my email request)
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• A substantial portion of the contribution of the non-resonant νν̄bb̄4j

diagrams should come from the off-shellW ∗ → jj pair.
➞ most of the non-resonant effects can be captured by calculating

e
+

e
− → νν̄Wjjbb̄ with W → jj

or
e
+

e
− → νν̄H4j with H → bb̄

• Calculatee+e− → νν̄Wjjbb̄, W → jj here (about 7000 Feynman

diagrams)

• Expectνν̄bb̄cc̄jj and νν̄4c backgrounds to be small (as inνν̄bb̄cc̄

case)

• Thebb̄4j background (withp/T from jet mis-measurement and energy

loss of theb-quarks) is very small
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√
s = 1 TeV

• Non-resonant diagrams substantially reduce the cross section at large

values ofmHH

• The non-resonant diagrams not included inνν̄Wjjbb̄ jet production

may well affect the cross section to a similar degree
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√
s = 3 TeV
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mH = 180 GeV

• FormH = 180 GeV,B(H → WW ) ≈ 93%

• Final states with the largest branching ratios areHH → 4W →
ℓ±νℓ6j (ℓ = e, µ) (Br ≈ 24%) andHH → 4W → 8j (Br ≈ 19%)

➞ concentrate on those final states

• e+e− → ℓ±p/T 6j:
require standard cuts and, in addition, 3 or more jet pairs consistend
with aW , with two of the pairs

160 GeV < m([jj][jj]) < 200 GeV

• main backgrounds: non-resonant diagrams andW6j production (about

21,000 Feyman diagrams)

• use6j invariant mass distribution to search for anomalous Higgs self-

couplings
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• A full calculation of the2 → 10 processe+e− → ℓ±p/T 6j is currently

not feasible

• to get an idea of how important the non-resonant diagrams are, I cal-

culatee+e− → νν̄ℓνℓjjH with H → WW → 4j (1,300 Feynman

diagrams) ande+e− → νν̄4jH with H → WW → ℓνℓjj (20,000

Feynman diagrams)

• results fore+e− → νeν̄eHH → νeν̄eℓ
±νℓ6j:

black line: SM signal

dashed black line:νeν̄eℓ
±νℓjjH, H → WW → 4j

dotted curve:νeν̄e4jH, H → WW → ℓ±νℓjj

red line: average ofνeν̄e4jH, H → WW → ℓ±νℓjj andνeν̄eℓ
±νℓjjH,

H → WW → 4j
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√
s = 1 TeV

• The nonresonant diagrams ine+e− → νν̄ℓνℓjjH with H → WW →
4j significantly enhance the cross section near threshold.

This is expected since theℓνℓ invariant mass cannot be constrained (3

ν’s in the final state)
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• The non-resonant diagrams inνeν̄e4jH, H → WW → ℓ±νℓjj pro-

duction reduce the cross section by a factor1.5 − 2

• The averaging procedure used here ignores a very large number of

Feynman diagrams which still may have a significant impact onthe

cross section

• Justification: compare SMe+e− → νeν̄eℓ
±νℓjjH, H → WW → 4j

cross section (black dashed line) with averaging (red line) thee+e− →
νeν̄eℓ

±νℓWH, W → jj, H → WW → 4j (blue line) and the

e+e− → νeν̄eWjjH, W → ℓνℓ, H → WW → 4j cross section

(black solid line)
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√
s = 3 TeV

• redand black dashed lines agree with a few precent

• The magentaline shows theνeν̄eHH, HH → 4W → ℓνℓ6j SM

signal cross section
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Adopting the averaging procedure introduced above

TheW6j background is very small
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HH → 8j

• Require 4 jet pairs consistent withW ’s

• The jet pairs are required to form two groups of4j systems which
satisfy

160 GeV < m([jj][jj]) < 200 GeV

• Main background: non-resonant diagrams

• Estimate by calculatinge+e− → νν̄4jH with H → WW → 4j and

the previously used averaging procedure

• black solid line: SM signal

dashed and dotted lines:∆λHHH = (λ/λSM − 1) = ±1

magenta: including non-resonant diagrams
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• non-resonant diagrams have a big effect

• there is no guarantee that the approximation used here is a good ap-

proximation
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4 – Sensitivity limits

• Perform a log-likelihood test

• Assume a 10% systematical uncertainty on cross section (probably
optimistic)

• assume
∫
Ldt = 1 ab−1 (corresponds to 5 years of running at ILC

design luminosity)

• no (marignal) gain from including final states with only 3 taggedb-
quarks for

√
s = 500 GeV (1 TeV)

➞ considering a working point with a somewhat reducedb-tagging ef-
ficiency, but a much reduced light/charm misidentification probabilty
may help

• for mH = 140 GeV andνν̄HH production, theHH → bb̄WW ∗

final states are included in the analysis
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• for mH = 180 GeV, both theνν̄8j andνν̄ℓνℓ6j final states are taken

into account

• 68% CL limits:

☞ ZHH → jj4b:√
s = 500 GeV,mH = 120 GeV:−0.41 < ∆λHHH < 0.44√
s = 500 GeV,mH = 140 GeV:−6.8 < ∆λHHH < 2.1√
s = 1 TeV, mH = 120 GeV:−0.45 < ∆λHHH < 0.53√
s = 1 TeV, mH = 140 GeV:−1.0 < ∆λHHH < 1.1

☞ νν̄HH:√
s = 1 TeV, mH = 120 GeV:−0.21 < ∆λHHH < 0.30√
s = 1 TeV, mH = 140 GeV:−0.38 < ∆λHHH < 0.94√
s = 1 TeV, mH = 180 GeV:−0.29 < ∆λHHH < 0.55√
s = 3 TeV, mH = 120 GeV:−0.12 < ∆λHHH < 0.14√
s = 3 TeV, mH = 140 GeV:−0.19 < ∆λHHH < 0.15√
s = 3 TeV, mH = 180 GeV:−0.20 < ∆λHHH < 0.16
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Random Remarks
• The values reported formH = 120 GeV,

√
s = 500 GeV agree quite

well this those of a fast simulation by SiD (Tim Barklow)

• A full simulation, however, gives limits which are about a factor 2

worse (SiD, private communication)

☞ limits from νν̄HH production are significantly more stringent at
√

s =

1 TeV than those fromZHH production

• At a 500 GeVe+e− machine, one can measure the Higgs boson self-

coupling only if the Higgs mass is close to the current lower experi-

mental limit

☞ At CLIC (
√

s = 3 TeV), limits can be improved by up to a factor of 1.5

if 3 ab−1 (5 years of running at design luminosity) can be achieved

☞ Whether the cuts used are adequate for CLIC remains to be seen
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Measuring the Higgs selfcoupling at a Muon Collider

• All results presented here applymutatis mutandisfor a muon collider

with the same center of mass energy and integrated luminosity

• The cross section for the direct channelµ+µ− → HH is several or-

ders of magnitude smallerthan that forZHH andνν̄HH production
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5 – Conclusions

• Non-resonant diagrams can significantly affect the total and differen-

tial cross sections fore+e− → jj4b

• At a 500 GeVe+e− machine, one can measure the Higgs boson self-

coupling only if the Higgs mass is close to the current lower experi-

mental limit

• Non-resonant diagrams inνν̄4b production can mimic the effects of

non-standard Higgs self-couplings

• At a 1 TeV machine, with 1 ab−1, νν̄HH production gives more pre-

cise limits thane+e− → ZHH.

• For CLIC (
√

s = 3 TeV, 3 ab−1) can measure the Higgs self-coupling

with a precision of10 − 20%.
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